We have located links that may give you full text access.
β-Hydroxybutyrate Alleviates Brain Aging Through the MTA1 Pathway in D-Galactose Injured Mice.
European Journal of Pharmacology 2024 August 29
Aging is an inevitable law of the process of life during which many physiological functions change. Brain aging is an important mechanism in the occurrence and development of degenerative diseases of the central nervous system. β-Hydroxybutyrate (BHBA) is a water-soluble, endogenous small-molecule ketone that can cross the blood-brain barrier and induce neuroprotective effects. This study aimed to investigate the effects of BHBA on D-galactose (D-gal) induced aging in mice and its underlying mechanisms using in vitro and in vivo experiments. These results indicated that D-gal-induced senescence, oxidative stress, and inflammatory responses were inhibited by BHBA, and autophagy was promoted by BHBA. Mechanistically, we explored the role of metastasis-associated antigen-1 (MTA1) in D-gal-induced damaged in HT22 cells using small interfering RNA (siRNA). The results demonstrated that the expression of MTA1 was significantly increased by BHBA, which attenuated D-gal-induced aging, oxidative stress, and inflammatory responses, and promoted autophagy through the upregulation of MTA1. In conclusion, MTA1 may be a novel target for treating aging caused by neurological damage. BHBA improves brain aging by activating the MTA1 pathway.
Full text links
Related Resources
Trending Papers
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app