We have located links that may give you full text access.
Reliability of quantitative magnetic susceptibility imaging metrics for cerebral cortex and major subcortical structures.
BACKGROUND AND PURPOSE: Susceptibility estimates derived from quantitative susceptibility mapping (QSM) images for the cerebral cortex and major subcortical structures are variably reported in brain magnetic resonance imaging (MRI) studies, as average of all ( μ all ${{{{\mu}}}_{{\mathrm{all}}}}$ ), absolute ( μ abs ${{{{\mu}}}_{{\mathrm{abs}}}}$ ), or positive- ( μ p ${{{{\mu}}}_{\mathrm{p}}}$ ) and negative-only ( μ n ${{{{\mu}}}_{\mathrm{n}}}$ ) susceptibility values using a region of interest (ROI) approach. This pilot study presents a reliability analysis of currently used ROI-QSM metrics and an alternative ROI-based approach to obtain voxel-weighted ROI-QSM metrics ( μ wp ${{{{\mu}}}_{{\mathrm{wp}}}}$ and μ wn ${{{{\mu}}}_{{\mathrm{wn}}}}$ ).
METHODS: Ten healthy subjects underwent repeated (test-retest) 3-dimensional multi-echo gradient-echo (3DMEGE) 3 Tesla MRI measurements. Complex-valued 3DMEGE images were acquired and reconstructed with slice thicknesses of 1 and 2 mm (3DMEGE1, 3DMEGE2) along with 3DT1-weighted isometric (voxel 1 mm3 ) images for independent registration and ROI segmentation. Agreement, consistency, and reproducibility of ROI-QSM metrics were assessed through Bland-Altman analysis, intraclass correlation coefficient, and interscan and intersubject coefficient of variation (CoV).
RESULTS: All ROI-QSM metrics exhibited good to excellent consistency and test-retest agreement with no proportional bias. Interscan CoV was higher for μ all ${{{{\mu}}}_{{\mathrm{all}}}}$ in comparison to the other metrics where it was below 15%, in both 3DMEGE1 and 3DMEGE2 datasets. Intersubject CoV for μ all ${{{{\mu}}}_{{\mathrm{all}}}}$ and μ abs ${{{{\mu}}}_{{\mathrm{abs}}}}$ exceeded 50% in all ROIs.
CONCLUSIONS: Among the evaluated ROI-QSM metrics, μ all ${{{{\mu}}}_{{\mathrm{all}}}}$ and μ abs ${{{{\mu}}}_{{\mathrm{abs}}}}$ estimates were less reliable, whereas separating positive and negative values (using μ p , μ n , μ wp , μ wn ${{{{\mu}}}_{\mathrm{p}}},\ {{{{\mu}}}_{\mathrm{n}}},\ {{{{\mu}}}_{{\mathrm{wp}}}},\ {{{{\mu}}}_{{\mathrm{wn}}}}$ ) improved the reproducibility within, and the comparability between, subjects, even when reducing the slice thickness. These preliminary findings may offer valuable insights toward standardizing ROI-QSM metrics across different patient cohorts and imaging settings in future clinical MRI studies.
METHODS: Ten healthy subjects underwent repeated (test-retest) 3-dimensional multi-echo gradient-echo (3DMEGE) 3 Tesla MRI measurements. Complex-valued 3DMEGE images were acquired and reconstructed with slice thicknesses of 1 and 2 mm (3DMEGE1, 3DMEGE2) along with 3DT1-weighted isometric (voxel 1 mm3 ) images for independent registration and ROI segmentation. Agreement, consistency, and reproducibility of ROI-QSM metrics were assessed through Bland-Altman analysis, intraclass correlation coefficient, and interscan and intersubject coefficient of variation (CoV).
RESULTS: All ROI-QSM metrics exhibited good to excellent consistency and test-retest agreement with no proportional bias. Interscan CoV was higher for μ all ${{{{\mu}}}_{{\mathrm{all}}}}$ in comparison to the other metrics where it was below 15%, in both 3DMEGE1 and 3DMEGE2 datasets. Intersubject CoV for μ all ${{{{\mu}}}_{{\mathrm{all}}}}$ and μ abs ${{{{\mu}}}_{{\mathrm{abs}}}}$ exceeded 50% in all ROIs.
CONCLUSIONS: Among the evaluated ROI-QSM metrics, μ all ${{{{\mu}}}_{{\mathrm{all}}}}$ and μ abs ${{{{\mu}}}_{{\mathrm{abs}}}}$ estimates were less reliable, whereas separating positive and negative values (using μ p , μ n , μ wp , μ wn ${{{{\mu}}}_{\mathrm{p}}},\ {{{{\mu}}}_{\mathrm{n}}},\ {{{{\mu}}}_{{\mathrm{wp}}}},\ {{{{\mu}}}_{{\mathrm{wn}}}}$ ) improved the reproducibility within, and the comparability between, subjects, even when reducing the slice thickness. These preliminary findings may offer valuable insights toward standardizing ROI-QSM metrics across different patient cohorts and imaging settings in future clinical MRI studies.
Full text links
Related Resources
Trending Papers
Molecular Therapeutics for Diabetic Kidney Disease: An Update.International Journal of Molecular Sciences 2024 September 19
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app