We have located links that may give you full text access.
Macrophage-induced Expression of TonEBP/NFAT5 Is Associated With Gefitinib Resistance and Migration in PC-9 Cells.
Anticancer Research 2024 September
BACKGROUND/AIM: Macrophages prevail in the microenvironment of several tumors, including non-small-cell lung cancer (NSCLC), where they secrete pro-tumorigenic factors that contribute to cancer progression. This study investigated the role of macrophages on the resistance of epidermal growth factor receptor (EGFR)-mutated NSCLC cells to tyrosine kinase inhibitors (TKIs).
MATERIALS AND METHODS: EGFR-mutated cell lines PC-9 and HCC827 were cocultured with macrophages and treated with TKIs (erlotinib and gefitinib). The effects of the macrophage-conditioned medium (macrophage CM) on gefitinib resistance and cell migration were also evaluated.
RESULTS: Co-culture with macrophages significantly enhanced the resistance to erlotinib and gefitinib in PC-9 and HCC827 cells compared to that in cells cultured independently. Macrophage CM markedly induced gefitinib resistance in PC-9 cells, with maximum resistance observed at 50% CM concentration. This resistance persisted for up to 48 h post-CM removal. Macrophage CM inhibited gefitinib-induced apoptosis, as evidenced by the decreased expression of cleaved caspase-3, PARP, and BIM. Additionally, macrophage CM increased the migration ability of PC-9 cells, as shown by the wound healing and transwell migration assays. Studies have shown that TonEBP is crucial in cancer metastasis and drug resistance; we found that inhibition of TonEBP/NFAT5 expression reduced gefitinib resistance and migration in macrophage CM-induced PC-9 cells, indicating its role as mediator of these effects.
CONCLUSION: Macrophages contribute to TKI resistance and enhance the migration of EGFR-mutated NSCLC cells through mechanisms involving TonEBP/NFAT5. Therefore, targeting TonEBP/NFAT5 represents a potential therapeutic strategy for overcoming macrophage-induced TKI resistance in NSCLC cells.
MATERIALS AND METHODS: EGFR-mutated cell lines PC-9 and HCC827 were cocultured with macrophages and treated with TKIs (erlotinib and gefitinib). The effects of the macrophage-conditioned medium (macrophage CM) on gefitinib resistance and cell migration were also evaluated.
RESULTS: Co-culture with macrophages significantly enhanced the resistance to erlotinib and gefitinib in PC-9 and HCC827 cells compared to that in cells cultured independently. Macrophage CM markedly induced gefitinib resistance in PC-9 cells, with maximum resistance observed at 50% CM concentration. This resistance persisted for up to 48 h post-CM removal. Macrophage CM inhibited gefitinib-induced apoptosis, as evidenced by the decreased expression of cleaved caspase-3, PARP, and BIM. Additionally, macrophage CM increased the migration ability of PC-9 cells, as shown by the wound healing and transwell migration assays. Studies have shown that TonEBP is crucial in cancer metastasis and drug resistance; we found that inhibition of TonEBP/NFAT5 expression reduced gefitinib resistance and migration in macrophage CM-induced PC-9 cells, indicating its role as mediator of these effects.
CONCLUSION: Macrophages contribute to TKI resistance and enhance the migration of EGFR-mutated NSCLC cells through mechanisms involving TonEBP/NFAT5. Therefore, targeting TonEBP/NFAT5 represents a potential therapeutic strategy for overcoming macrophage-induced TKI resistance in NSCLC cells.
Full text links
Related Resources
Trending Papers
2024 AHA/ACC/ACS/ASNC/HRS/SCA/SCCT/SCMR/SVM Guideline for Perioperative Cardiovascular Management for Noncardiac Surgery: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.Circulation 2024 September 24
Biomarkers in acute kidney injury.Annals of Intensive Care 2024 September 15
Pathophysiology and Treatment of Prediabetes and Type 2 Diabetes in Youth.Diabetes Care 2024 September 9
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app