We have located links that may give you full text access.
Design of the Elastic Modulus of porous lattice structures composed of cells with continuously variable cross section carrying structures.
Clinical Biomechanics 2024 August 23
BACKGROUND: Porous bone implants have a wide range of applications for their low elastic modulus and good connectivity. It is necessary to explore an elastic modulus control method that can significantly regulate the elastic modulus under the condition of maintaining a constant porosity.
METHODS: For achieving continuously changing elastic modulus of porous lattice structure, the simple cubic lattice structures were selected as research object, and the distribution of cross-sectional sizes of its carrying structures were set as variable continuous curves. The prediction model for the elastic modulus was established based on the elasticity mechanics and the equal mass assumption. Then, the prediction model is enhanced through compression simulation of the unit cell structure. Finally, the accuracy of prediction model is validated by compression experiments.
FINDINGS: The results indicate that the distribution of cross-sectional size of the carrying structures has a significant impact on the elastic modulus of unit cell structures under the constraint of equal mass. By adjusting the characteristic parameters of distribution curves, the elastic modulus can be changed within a large range.
INTERPRETATION: Variable cross-section can effectively change the elastic modulus of porous structures while ensuring constant porosity. This method has important value in decoupling the influence of geometric parameters on the elastic modulus of porous structures.
METHODS: For achieving continuously changing elastic modulus of porous lattice structure, the simple cubic lattice structures were selected as research object, and the distribution of cross-sectional sizes of its carrying structures were set as variable continuous curves. The prediction model for the elastic modulus was established based on the elasticity mechanics and the equal mass assumption. Then, the prediction model is enhanced through compression simulation of the unit cell structure. Finally, the accuracy of prediction model is validated by compression experiments.
FINDINGS: The results indicate that the distribution of cross-sectional size of the carrying structures has a significant impact on the elastic modulus of unit cell structures under the constraint of equal mass. By adjusting the characteristic parameters of distribution curves, the elastic modulus can be changed within a large range.
INTERPRETATION: Variable cross-section can effectively change the elastic modulus of porous structures while ensuring constant porosity. This method has important value in decoupling the influence of geometric parameters on the elastic modulus of porous structures.
Full text links
Related Resources
Trending Papers
Molecular Therapeutics for Diabetic Kidney Disease: An Update.International Journal of Molecular Sciences 2024 September 19
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app