Add like
Add dislike
Add to saved papers

Precognition of Known And Unknown Biothreats: A Risk-Based Approach.

Data mining and artificial intelligence algorithms can estimate the probability of future occurrences with defined precision. Yet, the prediction of infectious disease outbreaks remains a complex and difficult task. This is demonstrated by the limited accuracy and sensitivity of current models in predicting the emergence of previously unknown pathogens such as Zika, Chikungunya, and SARS-CoV-2, and the resurgence of Mpox, along with their impacts on global health, trade, and security. Comprehensive analysis of infectious disease risk profiles, vulnerabilities, and mitigation capacities, along with their spatiotemporal dynamics at the international level, is essential for preventing their transnational propagation. However, annual indexes about the impact of infectious diseases provide a low level of granularity to allow stakeholders to craft better mitigation strategies. A quantitative risk assessment by analytical platforms requires billions of near real-time data points from heterogeneous sources, integrating and analyzing univariable or multivariable data with different levels of complexity and latency that, in most cases, overwhelm human cognitive capabilities. Autonomous biosurveillance can open the possibility for near real-time, risk- and evidence-based policymaking and operational decision support.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app