Add like
Add dislike
Add to saved papers

177 Lu-labeling of nuclear localization sequence (NLS)-grafted HER2-receptor affine peptide.

Tagging of cell permeable nuclear localization sequence (NLS) with receptor targeting peptide vectors is an attractive strategy for selectively targeted translocation of therapeutic cargoes. The present study aimed at grafting nuclear localization sequence (NLS) onto breast cancer targeting rL-A9 peptide. Molecular docking analysis revealed higher binding affinity of the peptide, DOTA-NLS-rL-A9 (-26.1 kJ/mol) towards HER2 receptor in comparison to DOTA-rL-A9 peptide (-22.2 kJ/mol). Confocal microscopy data suggested significantly enhanced cellular internalization of NLS-tagged peptide. The engineered HER2-selective, DOTA-NLS-rL-A9 peptide scaffold was radiolabeled with Lu-177 for intracellular delivery of the theranostic radionuclide into tumor cells. [177 Lu]Lu-DOTA-NLS-rL-A9 exhibited significantly enhanced binding affinity (4.58 ± 1.77 nM) towards human breast carcinoma SKBR3 cells and cellular internalization (85 % at 24 h) compared to its original analog, [177 Lu]Lu-DOTA-rL-A9. In vivo biodistribution studies showed consistent retention of [177 Lu]Lu-DOTA-NLS-rL-A9 in the tumor with negligible washout of radioactivity (∼4.1 % ID/g at 48 h). Prolonged tumor activity with rapid off-target tissue clearance resulted in significantly high tumor-to-background ratios. The radiopeptide, [177 Lu]Lu-DOTA-NLS-rL-A9 thus, being precisely confined into HER2-expressing tumor cells and exhibiting favourable pharmacokinetic features is an efficient candidate for further screening.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app