Add like
Add dislike
Add to saved papers

Dose-response effects of caffeine during repeated cycling sprints in normobaric hypoxia to exhaustion.

PURPOSE: With limited studies exploring the dose-response of caffeine consumption on repeated sprint ability in hypoxia, this study aimed to determine the optimal caffeine dose (low, moderate or high) during repeated sprints in hypoxia to exhaustion.

METHODS: On separate visits, twelve active males randomly performed four experimental trials in normobaric hypoxia (inspired oxygen fraction: 16.5 ± 0.2%). Participants ingested placebo (PLA) or caffeine capsules (3, 6 or 9 mg/kg or LOW, MOD and HIGH, respectively) 1 h before exercise and then underwent a repeated cycling sprint test (10 s sprint/20 s active recovery) to exhaustion. Total sprint number and work done, peak and mean power output, blood lactate concentration, cardiorespiratory and perceptual responses were recorded.

RESULTS: Total sprint number was greater in MOD and HIGH compared to PLA (20 ± 7 and 18 ± 8 vs. 13 ± 4; all P < 0.05), with MOD also higher than LOW (15 ± 6; P = 0.02). Total work done was greater in MOD (111 ± 40 kJ) and HIGH (100 ± 35 kJ) compared to LOW (83 ± 29 kJ) and PLA (76 ± 25 kJ) (all P < 0.05). However, there were no significant differences in total sprint number or total work done between MOD and HIGH (all P > 0.05). Blood lactate concentration was higher in both MOD and HIGH compared to PLA (all P < 0.05). However, peak and mean power outputs, fatigue index, and ratings of perceived exertion did not differ across different caffeine dosages (all P > 0.05).

CONCLUSION: A moderate dose of caffeine (6 mg/kg) is the optimal amount for enhancing repeated cycling sprint ability when compared to low and high doses in moderate normobaric hypoxia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app