We have located links that may give you full text access.
Exploring novel A 2A AR antagonists: Design, synthesis, and evaluation of 2,6,9-trisubstituted purine derivatives as promising antifibrotic agents.
Bioorganic & Medicinal Chemistry 2024 August 16
A series of 2,6,9-trisubstituted purine derivatives were designed and synthesized with diverse chemical moieties. Through a comprehensive biological evaluation, we identified 4-(6-(methylamino)-2-(phenylethynyl)-9H-purin-9-yl)phenol (6a) as a promising A2A AR antagonist with potent antifibrotic properties. Compound 6a demonstrated significant efficacy in inhibiting CRE promoter activity and in reducing the expression of fibrogenic marker proteins and downstream effectors of A2A AR activation, surpassing the A2A AR antagonist ZM241385 and initial screening hits, 9-benzyl-N-methyl-2-(phenylethynyl)-9H-purin-6-amine (5a) and 9-((benzyloxy)methyl)-N-methyl-2-(phenylethynyl)-9H-purin-6-amine (5j). Further validation revealed that compound 6a effectively inhibited fibrogenic marker proteins induced by A2A AR overexpression or TGF-β1 treatment in hepatic stellate cells, alongside reducing PKA and CREB phosphorylation. These findings suggest that compound 6a exerts its antifibrotic action by modulating the cAMP/PKA/CREB pathway through A2A AR inhibition. Overall, our study provides valuable insights for the development of novel therapeutics that target hepatic fibrosis through A2A AR antagonism.
Full text links
Related Resources
Trending Papers
Novel Insights into Diabetic Kidney Disease.International Journal of Molecular Sciences 2024 September 23
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app