Add like
Add dislike
Add to saved papers

METTL14 promotes chondrocyte ferroptosis in osteoarthritis via m6A modification of GPX4.

BACKGROUND: Ferroptosis is caused by iron-dependent peroxidation of membrane phospholipids and chondrocyte ferroptosis contributes to osteoarthritis (OA) progression. Glutathione peroxidase 4 (GPX4) plays a master role in blocking ferroptosis. N6-methyladenosine (m6A) is an epigenetic modification among mRNA post-transcriptional modifications. This study investigated the effect of methyltransferase-like 14 (METTL14), the key component of the m6A methyltransferase, on chondrocyte ferroptosis via m6A modification.

METHODS: An OA rat model was established through an intra-articular injection of monosodium iodoacetate in the right knee. OA cartilages in rat models were used for gene expression analysis. Primary mouse chondrocytes or ADTC5 cells were stimulated with IL-1β or erastin. The m6A RNA methylation quantification kit was used to measure m6A level. The effect of METTL14 and GPX4 on ECM degradation and ferroptosis was investigated through western blotting, fluorescence immunostaining, propidium iodide staining, and commercially available kits. The mechanism of METTL14 action was explored through MeRIP-qPCR assays.

RESULTS: METTL14 and m6A expression was upregulated in osteoarthritic cartilages and IL-1β-induced chondrocytes. METTL14 depletion repressed the IL-1β or erastin-stimulated ECM degradation and ferroptosis in mouse chondrocytes. METTL14 inhibited GPX4 gene through m6A methylation modification. GPX4 knockdown reversed the si-METTL14-mediated protection in IL-1β-induced chondrocytes.

CONCLUSION: METTL14 depletion inhibits ferroptosis and ECM degradation by suppressing GPX4 mRNA m6A modification in injured chondrocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app