We have located links that may give you full text access.
Phytochemical Analysis and In Vivo Antimalarial Activities of Ethyl Acetate Fraction of Spilanthes filicaulis on Mice Subjected to Plasmodium berghei .
Vector Borne and Zoonotic Diseases 2024 August 20
Background and Objectives: Malaria airs a life-threatening risk in Tropical African countries, stemming from infection by Plasmodium species. This region is richly endowed by nature with a wealth of diverse and largely unexplored plants that hold the potential for managing this protozoan parasite. The currently accessible over-the-counter drugs for disease management often present affordability challenges for the average person, exacerbated by the parasite's increasing resistance to them. This study investigated the phytoconstituents present in the ethyl acetate fraction of Spilanthes filicaulis (EFSF) and explored the antimalarial effects of EFSF on mice infected with Plasmodium berghei . Methods: Standard methods and gas chromatography-mass spectrometry (GC-MS) were used to identify phytoconstituents. Chloroquine phosphate-sensitive P. berghei (NK-65) was intraperitoneally inoculated into Swiss mice. The in vivo antimalarial activity of EFSF was assessed at dose levels of 250, 500, and 750 mg/kg, using 4-day suppressive and curative antimalarial models. Parameters evaluated in the inoculated mice included rectal temperature (RT), body weight (BW), packed cell volume (PCV), level of parasitemia, and mean survival time (MST). Results: Steroids, alkaloids, flavonoids, tannins, saponins, terpenoids, and cardiac glycosides were the identified phytochemicals present in EFSF, and GC-MS alongside reveals the presence of 20 bioactive compounds predominantly fatty acids and alcohol esters. Significant prevention of reductions in RT, BW, and PCV was observed in the EFSF-treated groups dose dependently relative to the untreated group. In addition, EFSF-treated groups significantly ( p < 0.05) suppressed parasitemia and exhibited chemosuppression of 79.46% and 77.38% in 4-day suppressive, whereas suppression of 59.74% and 58.66% in curative treatment, respectively, at 500 and 750 mg/kg thus consequently extending the MST of infected treated mice compared with the untreated group. Interpretation and Conclusion: Put together, the EFSF exhibited enhanced antimalarial efficacy against mice infected with P. berghei thus affirming that plants still maintain lead way as a potential source of novel antimalarial remedies.
Full text links
Related Resources
Trending Papers
Central venous catheter insertion site and infection prevention in 2024.Intensive Care Medicine 2024 September 30
Novel Insights into Diabetic Kidney Disease.International Journal of Molecular Sciences 2024 September 23
2024 ESC Guidelines for the management of elevated blood pressure and hypertension.European Heart Journal 2024 August 30
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app