Add like
Add dislike
Add to saved papers

GDF11 evokes lung injury, inflammation, and fibrosis in mice through the ALK5-Smad2/3 signaling pathway.

Growth differentiation factor 11 (GDF11) belongs to the transforming growth factor-β (TGF-β) superfamily and participates in various pathophysiological processes. Initially, GDF11 was suggested to act as a rejuvenator by improving age-related phenotypes of the heart, brain, and skeletal muscle in aged mice. However, recent studies demonstrate that GDF11 also serves as an adverse risk factor for human frailty and diseases. However, the role of GDF11 in pulmonary fibrosis (PF) remains unclear. In this study, we explored the role and signaling mechanisms of GDF11 in PF. We discovered that GDF11 expression was markedly upregulated in fibrotic lung tissues of both humans and mice. Intratracheal administration of commercial recombinant GDF11 caused lung injury, inflammation, and fibrogenesis in mice. Furthermore, adenovirus-mediated secretory expression of mature GDF11 was exacerbated, whereas full-length GDF11 or the GDF11 propeptide (GDF111-298 ) alleviated bleomycin-induced PF in mice. In vitro experiments demonstrated that GDF11 suppressed the growth of alveolar and bronchial epithelial cells (A549 and BEAS-2B) and pulmonary microvascular endothelial cells (HPMVEC), promoted fibroblast activation, and induced epithelial/endothelial-mesenchymal transition (EMT/EndoMT). These effects corresponded to the phosphorylation of Smad2/3, and blocking ALK5-Smad2/3 signaling abolished the in vivo and in vitro effects of GDF11. In conclusion, our findings provide evidence that GDF11 acts as a potent injurious, pro-inflammatory, and pro-fibrotic factor in the lungs via the ALK5-Smad2/3 pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app