We have located links that may give you full text access.
DLCNBC-SA: a model for assessing axillary lymph node metastasis status in early breast cancer patients.
Quantitative Imaging in Medicine and Surgery 2024 August 1
BACKGROUND: Axillary lymph node (ALN) status is a crucial prognostic indicator for breast cancer metastasis, with manual interpretation of whole slide images (WSIs) being the current standard practice. However, this method is subjective and time-consuming. Recent advancements in deep learning-based methods for medical image analysis have shown promise in improving clinical diagnosis. This study aims to leverage these technological advancements to develop a deep learning model based on features extracted from primary tumor biopsies for preoperatively identifying ALN metastasis in early-stage breast cancer patients with negative nodes.
METHODS: We present DLCNBC-SA, a deep learning-based network specifically tailored for core needle biopsy and clinical data feature extraction, which integrates a self-attention mechanism (CNBC-SA). The proposed model consists of a feature extractor based on convolutional neural network (CNN) and an improved self-attention mechanism module, which can preserve the independence of features in WSIs for analysis and enhancement to provide rich feature representation. To validate the performance of the proposed model, we conducted comparative experiments and ablation studies using publicly available datasets, and verification was performed through quantitative analysis.
RESULTS: The comparative experiment illustrates the superior performance of the proposed model in the task of binary classification of ALNs, as compared to alternative methods. Our method achieved outstanding performance [area under the curve (AUC): 0.882] in this task, significantly surpassing the state-of-the-art (SOTA) method on the same dataset (AUC: 0.862). The ablation experiment reveals that incorporating RandomRotation data augmentation technology and utilizing Adadelta optimizer can effectively enhance the performance of the proposed model.
CONCLUSIONS: The experimental results demonstrate that the model proposed in this paper outperforms the SOTA model on the same dataset, thereby establishing its reliability as an assistant for pathologists in analyzing WSIs of breast cancer. Consequently, it significantly enhances both the efficiency and accuracy of doctors during the diagnostic process.
METHODS: We present DLCNBC-SA, a deep learning-based network specifically tailored for core needle biopsy and clinical data feature extraction, which integrates a self-attention mechanism (CNBC-SA). The proposed model consists of a feature extractor based on convolutional neural network (CNN) and an improved self-attention mechanism module, which can preserve the independence of features in WSIs for analysis and enhancement to provide rich feature representation. To validate the performance of the proposed model, we conducted comparative experiments and ablation studies using publicly available datasets, and verification was performed through quantitative analysis.
RESULTS: The comparative experiment illustrates the superior performance of the proposed model in the task of binary classification of ALNs, as compared to alternative methods. Our method achieved outstanding performance [area under the curve (AUC): 0.882] in this task, significantly surpassing the state-of-the-art (SOTA) method on the same dataset (AUC: 0.862). The ablation experiment reveals that incorporating RandomRotation data augmentation technology and utilizing Adadelta optimizer can effectively enhance the performance of the proposed model.
CONCLUSIONS: The experimental results demonstrate that the model proposed in this paper outperforms the SOTA model on the same dataset, thereby establishing its reliability as an assistant for pathologists in analyzing WSIs of breast cancer. Consequently, it significantly enhances both the efficiency and accuracy of doctors during the diagnostic process.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app