Add like
Add dislike
Add to saved papers

Ontology-based Data Collection for a Hybrid Outbreak Detection Method Using Social Media.

Given the persistent global challenge presented by rapidly spreading diseases, as evidenced notably by the widespread impact of the COVID-19 pandemic on both human health and economies worldwide, the necessity of developing effective infectious disease prediction models has become of utmost importance. In this context, the utilization of online social media platforms as valuable tools in healthcare settings has gained prominence, offering direct avenues for disseminating critical health information to the public in a timely and accessible manner. Propelled by the ubiquitous accessibility of the internet through computers and mobile devices, these platforms promise to revolutionize traditional detection methods, providing more immediate and reliable epidemiological insights. Leveraging this paradigm shift, our proposed framework harnesses Twitter data associated with infectious disease symptoms, employing ontology to identify and curate relevant tweets. Central to our methodology is a hybrid model that integrates XGBoost and Bidirectional Long Short-Term Memory (BiLSTM) architectures. The integration of XGBoost addresses the challenge of handling small dataset sizes, inherent during outbreaks due to limited time series data. XGBoost serves as a cornerstone for minimizing the loss function and identifying optimal features from our multivariate time series data. Subsequently, the combined dataset, comprising original features and predicted values by XGBoost, is channeled into the BiLSTM for further processing. Through extensive experimentation with a dataset spanning multiple infectious disease outbreaks, our hybrid model demonstrates superior predictive performance compared to state-of-the-art and baseline models. By enhancing forecasting accuracy and outbreak tracking capabilities, our model offers promising prospects for assisting health authorities in mitigating fatalities and proactively preparing for potential outbreaks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app