Add like
Add dislike
Add to saved papers

Bioflavonoid Baicalein Modulates Tetracycline Resistance by Inhibiting Efflux Pump in Staphylococcus aureus .

The rise in antibiotic resistance among bacterial pathogens, particularly Staphylococcus aureus , has become a critical global health issue, necessitating the search for novel antimicrobial agents. S. aureus uses various mechanisms to resist antibiotics, including the activation of efflux pumps, biofilm formation, and enzymatic modification of drugs. This study explores the potential of baicalein, a bioflavonoid from Scutellaria baicalensis , in modulating tetracycline resistance in S. aureus by inhibiting efflux pumps. The synergistic action of baicalein and tetracycline was evaluated through various assays. The minimum inhibitory concentration (MIC) of baicalein and tetracycline against S. aureus was 256 and 1.0 μg/mL, respectively. Baicalein at 64 μg/mL reduced the MIC of tetracycline by eightfold, indicating a synergistic effect (fractional inhibitory concentration index: 0.375). Time-kill kinetics demonstrated a 1.0 log CFU/mL reduction in bacterial count after 24 hours with the combination treatment. The ethidium bromide accumulation assay showed that baicalein mediated significant inhibition of efflux pumps, with a dose-dependent increase in fluorescence. In addition, baicalein inhibited DNA synthesis by 73% alone and 92% in combination with tetracycline. It also markedly reduced biofilm formation and the invasiveness of S. aureus into HeLa cells by 52% at 64 μg/mL. These findings suggest that baicalein enhances tetracycline efficacy and could be a promising adjunct therapy to combat multidrug-resistant S. aureus infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app