Journal Article
Review
Add like
Add dislike
Add to saved papers

Palmitoylation of synaptic proteins: roles in functional regulation and pathogenesis of neurodegenerative diseases.

Palmitoylation is a type of lipid modification that plays an important role in various aspects of neuronal function. Over the past few decades, several studies have shown that the palmitoylation of synaptic proteins is involved in neurotransmission and synaptic functions. Palmitoyl acyltransferases (PATs), which belong to the DHHC family, are major players in the regulation of palmitoylation. Dysregulated palmitoylation of synaptic proteins and mutated/dysregulated DHHC proteins are associated with several neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). In this review, we summarize the recent discoveries on the subcellular distribution of DHHC proteins and analyze their expression patterns in different brain cells. In particular, this review discusses how palmitoylation of synaptic proteins regulates synaptic vesicle exocytotic fusion and the localization, clustering, and transport of several postsynaptic receptors, as well as the role of palmitoylation of other proteins in regulating synaptic proteins. Additionally, some of the specific known associations of these factors with neurodegenerative disorders are explored, with a few suggestions for the development of therapeutic strategies. Finally, this review provides possible directions for future research to reveal detailed and specific mechanisms underlying the roles of synaptic protein palmitoylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app