We have located links that may give you full text access.
Semaxanib, a VEGF inhibitor, suppresses melanogenesis by modulating CRTC3 independently of VEGF signaling.
Journal of Dermatological Science 2024 July 22
BACKGROUND: Dysregulation of melanogenesis contributes to the development of skin hyperpigmentation diseases, which poses a treatment challenge. Following the establishment of CRTC3 screening methods to explore small molecules inhibiting melanogenesis for the topical treatment of hyperpigmentation diseases, we identified a candidate molecule, semaxanib.
OBJECTIVE: To explore the antimelanogenic effects of semaxanib, a vascular endothelial growth factor receptor (VEGFR) 2 inhibitor, for potential applications in hyperpigmentation management and to unravel the role of VEGF signaling in melanocyte biology by investigating mechanism of action of semaxanib.
METHODS: Mouse-derived spontaneously immortalized melanocytes, B16F10, and normal human primary epidermal melanocytes cells were treated with semaxanib, and cellular responses were assessed using cell viability assays and melanin content measurements. Molecular mechanisms were investigated using transcriptional activity assays, reverse-transcription polymerase chain reaction, and immunoblotting analysis. In vivo studies were conducted using an epidermis-humanized transgenic mouse model and ex vivo human skin tissues.
RESULTS: Semaxanib ameliorated melanin content in cultured melanocytes by downregulating the expression of melanogenesis-associated genes by suppressing the CRTC3/microphthalmia-associated transcription factors. Topical application of semaxanib reduced melanin accumulation in the ultraviolet B-stimulated ex vivo human epidermis and tail of K14-stem cell factor transgenic mice. Mechanistically, the antimelanogenic effect induced by semaxanib was associated with SIK2-CRTC3-MITF rather than VEGF signaling in melanocytes.
CONCLUSION: Semaxanib emerges as a promising candidate for the development of therapeutics for hyperpigmentation, potentially working independently of VEGF signaling in human melanocytes.
OBJECTIVE: To explore the antimelanogenic effects of semaxanib, a vascular endothelial growth factor receptor (VEGFR) 2 inhibitor, for potential applications in hyperpigmentation management and to unravel the role of VEGF signaling in melanocyte biology by investigating mechanism of action of semaxanib.
METHODS: Mouse-derived spontaneously immortalized melanocytes, B16F10, and normal human primary epidermal melanocytes cells were treated with semaxanib, and cellular responses were assessed using cell viability assays and melanin content measurements. Molecular mechanisms were investigated using transcriptional activity assays, reverse-transcription polymerase chain reaction, and immunoblotting analysis. In vivo studies were conducted using an epidermis-humanized transgenic mouse model and ex vivo human skin tissues.
RESULTS: Semaxanib ameliorated melanin content in cultured melanocytes by downregulating the expression of melanogenesis-associated genes by suppressing the CRTC3/microphthalmia-associated transcription factors. Topical application of semaxanib reduced melanin accumulation in the ultraviolet B-stimulated ex vivo human epidermis and tail of K14-stem cell factor transgenic mice. Mechanistically, the antimelanogenic effect induced by semaxanib was associated with SIK2-CRTC3-MITF rather than VEGF signaling in melanocytes.
CONCLUSION: Semaxanib emerges as a promising candidate for the development of therapeutics for hyperpigmentation, potentially working independently of VEGF signaling in human melanocytes.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app