We have located links that may give you full text access.
Using Machine Learning to Identify Patients at Risk of Acquiring HIV in an Urban Health System.
Journal of Acquired Immune Deficiency Syndromes : JAIDS 2024 September 1
BACKGROUND: Effective measures exist to prevent the spread of HIV. However, the identification of patients who are candidates for these measures can be a challenge. A machine learning model to predict risk for HIV may enhance patient selection for proactive outreach.
SETTING: Using data from the electronic health record at Parkland Health, 1 of the largest public healthcare systems in the country, a machine learning model is created to predict incident HIV cases. The study cohort includes any patient aged 16 or older from 2015 to 2019 (n = 458,893).
METHODS: Implementing a 70:30 ratio random split of the data into training and validation sets with an incident rate <0.08% and stratified by incidence of HIV, the model is evaluated using a k-fold cross-validated (k = 5) area under the receiver operating characteristic curve leveraging Light Gradient Boosting Machine Algorithm, an ensemble classifier.
RESULTS: The light gradient boosting machine produces the strongest predictive power to identify good candidates for HIV PrEP. A gradient boosting classifier produced the best result with an AUC of 0.88 (95% confidence interval: 0.86 to 0.89) on the training set and 0.85 (95% confidence interval: 0.81 to 0.89) on the validation set for a sensitivity of 77.8% and specificity of 75.1%.
CONCLUSIONS: A gradient boosting model using electronic health record data can be used to identify patients at risk of acquiring HIV and implemented in the clinical setting to build outreach for preventative interventions.
SETTING: Using data from the electronic health record at Parkland Health, 1 of the largest public healthcare systems in the country, a machine learning model is created to predict incident HIV cases. The study cohort includes any patient aged 16 or older from 2015 to 2019 (n = 458,893).
METHODS: Implementing a 70:30 ratio random split of the data into training and validation sets with an incident rate <0.08% and stratified by incidence of HIV, the model is evaluated using a k-fold cross-validated (k = 5) area under the receiver operating characteristic curve leveraging Light Gradient Boosting Machine Algorithm, an ensemble classifier.
RESULTS: The light gradient boosting machine produces the strongest predictive power to identify good candidates for HIV PrEP. A gradient boosting classifier produced the best result with an AUC of 0.88 (95% confidence interval: 0.86 to 0.89) on the training set and 0.85 (95% confidence interval: 0.81 to 0.89) on the validation set for a sensitivity of 77.8% and specificity of 75.1%.
CONCLUSIONS: A gradient boosting model using electronic health record data can be used to identify patients at risk of acquiring HIV and implemented in the clinical setting to build outreach for preventative interventions.
Full text links
Related Resources
Trending Papers
Prevention and management of venous thrombosis in patients with cirrhosis.British Journal of Haematology 2024 August 26
Clinical Evaluation and Management of Thrombotic Microangiopathy.Arthritis & Rheumatology 2024 Februrary
Hodgkin lymphoma: 2025 update on diagnosis, risk-stratification, and management.American Journal of Hematology 2024 September 6
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app