Add like
Add dislike
Add to saved papers

Is there any association between blood glycoalkaloid levels and anencephaly in human?

Clinical Biochemistry 2024 August 4
AIM: In various experimental animal studies, it has been proven that solanine, a subtype of glycoalkaloids, is responsible for neural tube defects. However, there have not been any human studies yet in this area. Our aim is to investigate whether there are any connections between blood glycoalkaloid levels and anencephaly in humans.

METHODS: Blood and amniotic fluid samples were taken from patients diagnosed with fetal anencephaly during pregnancy. The samples from patients with normal pregnancies were taken as well and was compared to the patients with fetal anencephaly during pregnancy. We searched the levels of three glycoalkaloids: solanine, chaconine and solamargine in the collected samples.

RESULTS: Solanine, which is one of the glycoalkaloids, could not be detected in both serum and amniotic fluid in the anencephaly as well as the control groups. However, alpha-solamargine levels were observed to be significantly higher in the blood and amniotic fluid samples of the control group than in the study group (p = 0.04). Alpha-chaconine levels were also significantly higher in the control group (p < 0.001) as well.

CONCLUSION: Based on our tests, we can conclude that no connections were found between blood solanine levels and anencephaly during pregnancy. Alpha-chaconine and alpha-solamargine levels were observed to be higher in blood and amniotic fluid in pregnancies without anencephaly. The relationship between glycoalkaloids and congenital anomalies needs to be further investigated in tissues other than blood.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app