We have located links that may give you full text access.
A new isoxazolyl-urea derivative induces apoptosis, paraptosis, and ferroptosis by modulating MAPKs in pancreatic cancer cells.
Biochimie 2024 August 2
MAPK pathway regulates the major events including cell division, cell death, migration, invasion, and angiogenesis. Small molecules that modulate the MAPK pathway have been demonstrated to impart cytotoxicity in cancer cells. Herein, the synthesis of a new isoxazolyl-urea derivative (QR-4) has been described and its effect on the growth of pancreatic cancer cells has been investigated. QR-4 reduced the cell viability in a panel of pancreatic cancer cells with minimal effect on normal hepatocytes. QR-4 induced cleavage of PARP and procaspase-3, reduced the expression of antiapoptotic proteins, increased SubG1 cells, and annexin V/PI-stained cells indicating the induction of apoptosis. QR-4 also triggered paraptosis as witnessed by the reduction of mitochondrial membrane potential, decrease in the expression of Alix, increase in the levels of ATF4 and CHOP, and enhanced ER stress. QR-4 also modulated ferroptosis-related events such as elevation in iron levels, alteration in GSH/GSSG ratio, and increase in the expression of TFRC with a parallel decrease in the expression of GPX4 and SLC7A11. The mechanistic approach revealed that QR-4 increases the phosphorylation of all three forms of MAPKs (JNK, p38, and ERK). Independent application of specific inhibitors of these MAPKs resulted in a partial reversal of QR-4-induced effects. Overall, these reports suggest that a new isoxazolyl-urea imparts cell death via apoptosis, paraptosis, and ferroptosis by regulating the MAPK pathway in pancreatic cancer cells.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app