We have located links that may give you full text access.
A novel prediction model for the probability of aggressive behavior in patients with mood disorders: Based on a cohort study.
Journal of Psychiatric Research 2024 July 30
BACKGROUND: Accurately predicting the probability of aggressive behavior is crucial for guiding early intervention in patients with mood disorders.
METHODS: Cox stepwise regression was conducted to identify potential influencing factors. Nomogram prediction models were constructed to predict the probabilities of aggressive behavior in patients with mood disorders, and their performance was assessed using consistency index (C-index) and calibration plots.
RESULTS: Research findings on 321 patients with mood disorders indicated that being older (HR = 0.92, 95% CI: 0.86-0.98), single (HR = 0.11, 95% CI: 0.02-0.68), having children (one child, HR = 0.07, 95%CI: 0.01-0.87; more than one child, HR = 0.33, 95%CI: 0.04-2.48), living in dormitory (HR = 0.25, 95%CI: 0.08-0.77), non-student (employee, HR = 0.24, 95% CI: 0.07-0.88; non-employee, HR = 0.09, 95% CI: 0.02-0.35), and higher scores in subjective support (HR = 0.90, 95% CI: 0.82-0.99) were protective factors. On the contrary, minorities (HR = 5.26, 95% CI: 1.23-22.48), living alone (HR = 4.37, 95% CI: 1.60-11.94), having suicide history (HR = 2.51, 95% CI: 1.06-5.95), and having higher scores in EPQ-E (HR = 1.04, 95% CI: 1.00-1.08) and EPQ-P (HR = 1.03, 95% CI: 1.00-1.07) were identified as independent risk factors for aggressive behavior in patients with mood disorders. The nomogram prediction model demonstrated high discrimination and goodness-of-fit.
CONCLUSIONS: A novel nomogram prediction model for the probability of aggressive behavior in patients with mood disorders was developed, effective in identifying at-risk populations and offering valuable insights for early intervention and proactive measures.
METHODS: Cox stepwise regression was conducted to identify potential influencing factors. Nomogram prediction models were constructed to predict the probabilities of aggressive behavior in patients with mood disorders, and their performance was assessed using consistency index (C-index) and calibration plots.
RESULTS: Research findings on 321 patients with mood disorders indicated that being older (HR = 0.92, 95% CI: 0.86-0.98), single (HR = 0.11, 95% CI: 0.02-0.68), having children (one child, HR = 0.07, 95%CI: 0.01-0.87; more than one child, HR = 0.33, 95%CI: 0.04-2.48), living in dormitory (HR = 0.25, 95%CI: 0.08-0.77), non-student (employee, HR = 0.24, 95% CI: 0.07-0.88; non-employee, HR = 0.09, 95% CI: 0.02-0.35), and higher scores in subjective support (HR = 0.90, 95% CI: 0.82-0.99) were protective factors. On the contrary, minorities (HR = 5.26, 95% CI: 1.23-22.48), living alone (HR = 4.37, 95% CI: 1.60-11.94), having suicide history (HR = 2.51, 95% CI: 1.06-5.95), and having higher scores in EPQ-E (HR = 1.04, 95% CI: 1.00-1.08) and EPQ-P (HR = 1.03, 95% CI: 1.00-1.07) were identified as independent risk factors for aggressive behavior in patients with mood disorders. The nomogram prediction model demonstrated high discrimination and goodness-of-fit.
CONCLUSIONS: A novel nomogram prediction model for the probability of aggressive behavior in patients with mood disorders was developed, effective in identifying at-risk populations and offering valuable insights for early intervention and proactive measures.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app