We have located links that may give you full text access.
Enhanced CT-Based Intratumoral and Peritumoral Radiomics Nomograms Predict High-Grade Patterns of Invasive Lung Adenocarcinoma.
Academic Radiology 2024 August 2
RATIONALE AND OBJECTIVES: Extraction of intratumoral and peritumoral radiomics features combined with clinical factors to establish nomograms to predict high-grade patterns (micropapillary and solid) of invasive adenocarcinoma of the lung (IAC).
MATERIALS AND METHODS: A retrospective study was conducted on 463 patients with pathologically confirmed IAC. Patients were randomized in a 7:3 ratio into a training cohort (n = 324) and a testing cohort (n = 139). A total of 2154 CT-based radiomic features were extracted from each of the four regions: gross tumor volume (GTV) and gross peritumoral tumor volume (GPTV3, GPTV6, GPTV9) containing peri-tumor regions of 3 mm, 6 mm, and 9 mm. A radiomics nomogram was constructed based on the optimal radiomics model and clinically independent predictors.
RESULTS: The GPTV3 radiomics model showed better predictive performance in the testing group compared to the GTV (0.840), GPTV6 (0.843), and GPTV9 (0.734) models, with an AUC value of 0.889 in the testing group. In the clinical model, tumor density and the presence of a spiculation sign were identified as independent predictors. The nomogram, which combined these independent predictors with the GPTV3-Radscore, proved to be clinically useful.
CONCLUSION: The GPTV3 radiomics model was superior to the GTV, GPTV6, and GPTV9 radiomics models in predicting high-grade patterns (HGP) of IAC. In addition, nomograms based on GPTV3 radiomics features and clinically independent predictors can further improve the prediction efficiency.
MATERIALS AND METHODS: A retrospective study was conducted on 463 patients with pathologically confirmed IAC. Patients were randomized in a 7:3 ratio into a training cohort (n = 324) and a testing cohort (n = 139). A total of 2154 CT-based radiomic features were extracted from each of the four regions: gross tumor volume (GTV) and gross peritumoral tumor volume (GPTV3, GPTV6, GPTV9) containing peri-tumor regions of 3 mm, 6 mm, and 9 mm. A radiomics nomogram was constructed based on the optimal radiomics model and clinically independent predictors.
RESULTS: The GPTV3 radiomics model showed better predictive performance in the testing group compared to the GTV (0.840), GPTV6 (0.843), and GPTV9 (0.734) models, with an AUC value of 0.889 in the testing group. In the clinical model, tumor density and the presence of a spiculation sign were identified as independent predictors. The nomogram, which combined these independent predictors with the GPTV3-Radscore, proved to be clinically useful.
CONCLUSION: The GPTV3 radiomics model was superior to the GTV, GPTV6, and GPTV9 radiomics models in predicting high-grade patterns (HGP) of IAC. In addition, nomograms based on GPTV3 radiomics features and clinically independent predictors can further improve the prediction efficiency.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app