We have located links that may give you full text access.
Evaluating the Expression of Efflux Pumps in Pseudomonas aeruginosa in Exposure to Sodium Dodecyl Sulfate, Didecyldimethylammonium Chloride, and Octenidine Dihydrochloride.
Emerging resistance of Gram-negative bacteria, including Pseudomonas aeruginosa , to commonly used detergents and disinfectant is encountering us with hazard. Inappropriate use of disinfectants has forced bacteria to gain resistance. The ability of bacteria to extrude substrates from the cellular interior to the external environment has enabled them to persist in exposure to toxic compounds, which is due to existence of transport proteins. Efflux pumps, in Gram-negative bacteria, are proteins responsible for exporting molecules outside of the cell, by crossing the two membranes. In this study, 40 P. aeruginosa strains from hospitals, clinics, and burn center laundries and 40 P. aeruginosa strains from urban laundries were collected. This study evaluated the minimum inhibitory concentration (MIC) level of sodium dodecyl sulfate (SDS), didecyldimethylammonium chloride (DDAC), and octenidine dihydrochloride (Od) in P. aeruginosa strains. The real-time PCR was carried out to evaluate the expression of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux system. The obtained results indicated a higher MIC level for SDS, DDAC, and Od in medical laundries. The sub-MIC level of DDAC and Od increased the expression level of MexAB-OprM, MexCD-OprJ, and MexXY-OprM in P. aeruginosa strains, suggesting that efflux pumps contribute to disinfectant resistance in P. aeruginosa .
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app