Add like
Add dislike
Add to saved papers

Deceased donor kidney function and branched chain amino acid metabolism during ex vivo normothermic perfusion.

Current kidney perfusion protocols are not optimized for addressing the ex vivo physiological and metabolic needs of the kidney. Ex vivo normothermic perfusion may be utilized to distinguish high-risk kidneys to determine suitability for transplantation. Here, we assessed the association of tissue metabolic changes with changes in a kidney injury biomarker and functional parameters in eight deceased donor kidneys deemed unsuitable for transplantation during a 12-hour ex vivo normothermic perfusion. The kidneys were grouped into good and poor performers based on blood flow and urine output. The mean age of the deceased kidney donors was 43 years with an average cold ischemia time of 37 hours. Urine output and creatinine clearance progressively increased and peaked at six hours post-perfusion among good performers. Poor performers had 71 ng/ml greater (95% confidence interval 1.5, 140) urinary neutrophil gelatinase-associated lipocalin at six hours compared to good performers corresponding to peak functional differences. Organ performance was distinguished by tissue metabolic differences in branched chain amino acid metabolism and that their tissue levels negatively correlated with urine output among all kidneys at six hours. Tissue lipid profiling showed poor performers were highlighted by the accumulation of membrane structure components including glycerolipids and sphingolipids at early perfusion time points. Thus, we showed that six hours is needed for kidney function recovery during ex vivo normothermic perfusion and that branched chain amino acid metabolism may be a major determinant of organ function and resilience.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app