Journal Article
Review
Add like
Add dislike
Add to saved papers

Ways of modulating GABA transporters to treat neurological disease.

INTRODUCTION: The main inhibitory neurotransmitter in the central nervous system (CNS), γ-aminobutyric acid (GABA), is involved in a multitude of neurological and psychiatric disorders characterized by an imbalance in excitatory and inhibitory signaling. Regulation of extracellular levels of GABA is maintained by the four GABA transporters (GATs; GAT1, GAT2, GAT3, and BGT1), Na+ /Cl- -coupled transporters of the solute carrier 6 (SLC6) family. Despite mounting evidence for the involvement of the non-GAT1 GABA transporters in diseases, only GAT1 has successfully been translated into clinical practice via the drug tiagabine.

AREAS COVERED: In this review, all four GATs will be described in terms of their involvement in disease, and the most recent data on structure, function, expression, and localization discussed in relation to their potential role as drug targets. This includes an overview of various ways to modulate the GATs in relation to treatment of diseases caused by imbalances in the GABAergic system.

EXPERT OPINION: The recent publication of various GAT1 structures is an important milestone for future development of compounds targeting the GATs. Such information can provide much needed insight into mechanistic aspects of all GAT subtypes and be utilized to design improved ligands for this highly interesting drug target class.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app