Add like
Add dislike
Add to saved papers

Uranium adsorption efficiency of diglycolamic acid functionalized graphitic carbon nitride adsorbent: Kinetic, isotherm, and thermodynamic studies.

This study proposes the use of diglycolamic acid-functionalized graphitic carbon nitride (HDGA-gCN) as an adsorbent for uranium removal. Our experiments showed that at pH 6.0, HDGA-gCN had a high adsorption capacity of 263.2 mg g-1 and achieved equilibrium in 30 min. The adsorption isotherm was well-fitted by the Langmuir model, and the adsorption kinetics followed a pseudo-second-order equation. U(VI) adsorption on HDGA-gCN is due to electrostatic interactions between the amine, diglycolamic acid, and uranium species. The thermodynamic parameters indicate that adsorption is spontaneous and exothermic. The loaded U(VI) can be desorbed using 0.1 M Na2 CO3 , and HDGA-gCN exhibited an exceptional adsorption percentage for U(VI) compared to other coexisting ions. HDGA-gCN had faster kinetics, adsorption capacity, and reusability, making it suitable for U(VI) remediation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app