We have located links that may give you full text access.
Integration of line-field confocal optical coherence tomography and in situ microenvironmental mapping to investigate the living microenvironment of reconstructed human skin and melanoma models.
Journal of Dermatological Science 2024 July 10
BACKGROUND: In tissue engineering, real-time monitoring of tumors and of the dynamics of the microenvironment within in vitro models has traditionally been hindered by the need to harvest the cultures to obtain material to analyze. Line-field confocal optical coherence tomography (LC-OCT) has proven to be useful in evaluating in vivo skin conditions, including melanoma, by capturing dynamic, three-dimensional (3D) information without the need for invasive procedures, such as biopsies. Additionally, the M-Duo Technology® developed by IMcoMET presents a unique opportunity for continuous in situ biomarker sampling, providing insights into local cellular behavior and interactions.
OBJECTIVE: This study aimed to validate the non-destructive mapping capabilities of two advanced methodologies (LC-OCT by DAMAE Medical and M-Duo Technology® by IMcoMET) to investigate the living microenvironment of in vitro reconstructed human skin (RhS) and melanoma-RhS (Mel-RhS).
METHODS: LC-OCT and M-Duo Technology® were compared to conventional analysis of the RhS and Mel-RhS microenvironments.
RESULTS: LC-OCT successfully visualized the distinct layers of the epidermis and tumor structures within the Mel-RhS, identifying keratinocytes, melanocytes, tumor nests, and fibroblasts. The M-Duo Technology® revealed differences in in situ cytokine (IL-6) and chemokine (CCL2, CXCL10, and IL-8) secretion between Mel-RhS and the control RhS. Notably, such differences were not detected through conventional investigation of secreted proteins in culture supernatants.
CONCLUSION: The combination of LC-OCT's high-resolution imaging and M-Duo Technology®'s in situ microenvironmental mapping has the potential to provide a synergistic platform for non-invasive, real-time analysis, allowing for prolonged observation of processes within Mel-RhS models without the need for culture disruption.
OBJECTIVE: This study aimed to validate the non-destructive mapping capabilities of two advanced methodologies (LC-OCT by DAMAE Medical and M-Duo Technology® by IMcoMET) to investigate the living microenvironment of in vitro reconstructed human skin (RhS) and melanoma-RhS (Mel-RhS).
METHODS: LC-OCT and M-Duo Technology® were compared to conventional analysis of the RhS and Mel-RhS microenvironments.
RESULTS: LC-OCT successfully visualized the distinct layers of the epidermis and tumor structures within the Mel-RhS, identifying keratinocytes, melanocytes, tumor nests, and fibroblasts. The M-Duo Technology® revealed differences in in situ cytokine (IL-6) and chemokine (CCL2, CXCL10, and IL-8) secretion between Mel-RhS and the control RhS. Notably, such differences were not detected through conventional investigation of secreted proteins in culture supernatants.
CONCLUSION: The combination of LC-OCT's high-resolution imaging and M-Duo Technology®'s in situ microenvironmental mapping has the potential to provide a synergistic platform for non-invasive, real-time analysis, allowing for prolonged observation of processes within Mel-RhS models without the need for culture disruption.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app