We have located links that may give you full text access.
Construction of knockout mutants in Mycobacterium intracellulare ATCC13950 strain using a thermosensitive plasmid containing negative selection marker rpsL .
Microbiology and Immunology 2024 July 23
BACKGROUND: Nontuberculous mycobacterial disease has emerged worldwide over the past 20 years. However, there are currently few reports on the established technique for constructing knockout mutants of nontuberculous mycobacteria. Therefore, gene recombination techniques for nontuberculous mycobacteria require further research.
RESULTS: We constructed vector pPR23LHR that harbors the ribosomal protein S12 gene (rpsL+ ) as a dominant negative selection marker and the hygromycin (Hyg) and lacZ cassettes as positive selection markers. We constructed knockout mutants of proteasomal genes, which we found to be required for hypoxic pellicle formation in Mycobacterium intracellulare by functional genomic analysis. The knockout mutants showed impaired hypoxic pellicle formation, consistent with previous data using epoxomicin, a proteasomal inhibitor.
CONCLUSIONS: Our findings demonstrate that rpsL+ is an efficient dominant negative selection marker for gene recombination in nontuberculous mycobacteria. Our temperature-sensitive rpsL+ method for the construction of knockout mutants will facilitate functional assays to validate the virulence factors of nontuberculous mycobacteria and the pathogenesis of nontuberculous mycobacterial disease.
RESULTS: We constructed vector pPR23LHR that harbors the ribosomal protein S12 gene (rpsL+ ) as a dominant negative selection marker and the hygromycin (Hyg) and lacZ cassettes as positive selection markers. We constructed knockout mutants of proteasomal genes, which we found to be required for hypoxic pellicle formation in Mycobacterium intracellulare by functional genomic analysis. The knockout mutants showed impaired hypoxic pellicle formation, consistent with previous data using epoxomicin, a proteasomal inhibitor.
CONCLUSIONS: Our findings demonstrate that rpsL+ is an efficient dominant negative selection marker for gene recombination in nontuberculous mycobacteria. Our temperature-sensitive rpsL+ method for the construction of knockout mutants will facilitate functional assays to validate the virulence factors of nontuberculous mycobacteria and the pathogenesis of nontuberculous mycobacterial disease.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app