We have located links that may give you full text access.
Dysrhythmia as a prominent feature of Parkinson's disease: An app-based tapping test.
Journal of the Neurological Sciences 2024 July 16
INTRODUCTION: Smartphone applications (apps) are instruments that assist with objective measurements during the clinical assessment of patients with movement disorders. We aim to test the hypothesis that Parkinson's disease (PD) patients will exhibit an increase in tapping variability and a decrease in tapping speed over a one-year period, compared to healthy controls (HC).
METHODS: Data was prospectively collected from participants enrolled in our Cincinnati Cohort Biomarker Program, in 2021-2023. Participants diagnosed with PD and age-matched HC were examined over a one-year-interval with a tapping test performed with customized smartphone app. Tapping speed (taps/s), inter-tap intervals and variability (movement regularity), and sequence effect were measured.
RESULTS: We included 295 PD patients and 62 HC. At baseline, PD subjects showed higher inter-tap variability than HC (coefficient-of-variation-CV, 37 ms [22-64] vs 26 ms [8-51]) (p = 0.007). Conversely, there was no difference in inter-tap intervals (411 ms [199-593] in PD versus 478 ms [243-618] in HC) and tapping speed (3.42[2.70-4.76] taps/s in PD versus 3.21 taps/s [2.57-4.54] in HC) (p > 0.05). Only PD subjects (n = 135), at the one-year follow-up, showed a decreased tapping speed vs baseline (3.44 taps/s [2.86-4.81] versus 3.39 taps/s [2.58,4.30]) (p = 0.036), without significant changes in inter-tap variability (CV, 32 ms [18,55] baseline versus 34 ms [22,59] follow-up) (p = 0.142). No changes were found in HC at the one-year follow up (all p values>0.05).
CONCLUSIONS: Inter-tap variability (dysrhythmia) but no inter-tap intervals or tapping speed are reliably distinctive feature of an app-based bradykinesia assessment in PD.
METHODS: Data was prospectively collected from participants enrolled in our Cincinnati Cohort Biomarker Program, in 2021-2023. Participants diagnosed with PD and age-matched HC were examined over a one-year-interval with a tapping test performed with customized smartphone app. Tapping speed (taps/s), inter-tap intervals and variability (movement regularity), and sequence effect were measured.
RESULTS: We included 295 PD patients and 62 HC. At baseline, PD subjects showed higher inter-tap variability than HC (coefficient-of-variation-CV, 37 ms [22-64] vs 26 ms [8-51]) (p = 0.007). Conversely, there was no difference in inter-tap intervals (411 ms [199-593] in PD versus 478 ms [243-618] in HC) and tapping speed (3.42[2.70-4.76] taps/s in PD versus 3.21 taps/s [2.57-4.54] in HC) (p > 0.05). Only PD subjects (n = 135), at the one-year follow-up, showed a decreased tapping speed vs baseline (3.44 taps/s [2.86-4.81] versus 3.39 taps/s [2.58,4.30]) (p = 0.036), without significant changes in inter-tap variability (CV, 32 ms [18,55] baseline versus 34 ms [22,59] follow-up) (p = 0.142). No changes were found in HC at the one-year follow up (all p values>0.05).
CONCLUSIONS: Inter-tap variability (dysrhythmia) but no inter-tap intervals or tapping speed are reliably distinctive feature of an app-based bradykinesia assessment in PD.
Full text links
Related Resources
Trending Papers
Prevention and management of venous thrombosis in patients with cirrhosis.British Journal of Haematology 2024 August 26
Clinical Evaluation and Management of Thrombotic Microangiopathy.Arthritis & Rheumatology 2024 Februrary
Hodgkin lymphoma: 2025 update on diagnosis, risk-stratification, and management.American Journal of Hematology 2024 September 6
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app