Add like
Add dislike
Add to saved papers

C/EBPε and its acetylation in PMN enhance the tolerance to trauma.

Severe trauma can lead to numerous serious complications, threating the well-being and vitality of the afflicted. The quantity and functionality of PMNs undergo rapid transformations in response to severe trauma, playing a pivotal role in the trauma response. The absence of CCAAT/enhancer-binding protein ε (C/EBPε) profoundly impairs the functionality of polymorphonuclear neutrophils (PMNs), a function of paramount importance in trauma. In this study, by generating mice with C/EBPε knocked out or overexpressed, we substantiate that C/EBPε ensures the restoration of PMN function, enhancing the expression of antimicrobial proteins and thereby promoting trauma recovery. Furthermore, diminished expression of C/EBPε is observed in trauma patients, with levels displaying a negative correlation with ISS and APACHE II scores, suggesting its potential as a prognostic indicator for clinical treatment. Mechanistically, we uncover the upregulation of SIRT1 and the inhibition of P300 participating in the suppression of C/EBPε acetylation, consequently reducing the resilience of mice to trauma. As therapeutic interventions, whether through the sole administration of PMN, NAM treatment, or their combination, all result in an increased survival rate in traumatic mice. In conclusion, our study elucidates the role of C/EBPε in enhancing the resilience to trauma and identifies C/EBPε acetylation as a critical regulatory mechanism, offering potential therapeutic approaches involving PMN transfusion and NAM treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app