We have located links that may give you full text access.
Facile detection of peptide-protein interactions using an electrophoretic crosslinking shift assay.
Journal of Biological Chemistry 2024 July 16
Protein-protein interactions with high specificity and low affinity are functionally important but are not comprehensively understood because they are difficult to identify. Particularly intriguing are the dynamic and specific interactions between folded protein domains and short unstructured peptides known as short linear motifs (SLiMs). Such domain-motif interactions (DMIs) are often difficult to identify and study because affinities are modest to weak. Here we describe "electrophoretic crosslinking shift assay" (ECSA), a simple in vitro approach that detects transient, low affinity interactions by covalently crosslinking a prey protein and a fluorescently labeled bait. We demonstrate this technique on the well characterized DMI between MAP kinases and unstructured D-motif peptide ligands. We show that ECSA detects sequence-specific micromolar interactions using less than a microgram of input prey protein per reaction, making it ideal for verifying candidate low-affinity DMIs of components that purify with low yield. We propose ECSA as an intermediate step in SLiM characterization that bridges the gap between high throughput techniques such as phage display and more resource-intensive biophysical and structural analysis.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app