We have located links that may give you full text access.
A single-cell atlas deconstructs heterogeneity across multiple models in murine traumatic brain injury and identifies novel cell-specific targets.
Neuron 2024 July 11
Traumatic brain injury (TBI) heterogeneity remains a critical barrier to translating therapies. Identifying final common pathways/molecular signatures that integrate this heterogeneity informs biomarker and therapeutic-target development. We present the first large-scale murine single-cell atlas of the transcriptomic response to TBI (334,376 cells) across clinically relevant models, sex, brain region, and time as a foundational step in molecularly deconstructing TBI heterogeneity. Results were unique to cell populations, injury models, sex, brain regions, and time, highlighting the importance of cell-level resolution. We identify cell-specific targets and previously unrecognized roles for microglial and ependymal subtypes. Ependymal-4 was a hub of neuroinflammatory signaling. A distinct microglial lineage shared features with disease-associated microglia at 24 h, with persistent gene-expression changes in microglia-4 even 6 months after contusional TBI, contrasting all other cell types that mostly returned to naive levels. Regional and sexual dimorphism were noted. CEREBRI, our searchable atlas (https://shiny.crc.pitt.edu/cerebri/), identifies previously unrecognized cell subtypes/molecular targets and is a leverageable platform for future efforts in TBI and other diseases with overlapping pathophysiology.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app