We have located links that may give you full text access.
Journal Article
Review
Polygene by environment interactions predicting depressive outcomes.
Depression is a major public health problem with a continued need to uncover its etiology. Current models of depression contend that gene-by-environment (G × E) interactions influence depression risk, and further, that depression is polygenic. Thus, recent models have emphasized two polygenic approaches: a hypothesis-driven multilocus genetic profile score (MGPS; "MGPS × E") and a polygenic risk score (PRS; "PRS × E") derived from genome-wide association studies (GWAS). This review for the first time synthesizes current knowledge on polygene by environment "P × E" interaction research predicting primarily depression-related outcomes, and in brief, neurobiological outcomes. The "environment" of focus in this project is stressful life events. It further discusses findings in the context of differential susceptibility and diathesis-stress theories-two major theories guiding G × E work. This synthesis indicates that, within the MGPS literature, polygenic scores based on the serotonin system, the HPA axis, or across multiple systems, interact with environmental stress exposure to predict outcomes at multiple levels of analyses and most consistently align with differential susceptibility theory. Depressive outcomes are the most studied, but neuroendocrine, and neuroimaging findings are observed as well. By contrast, vast methodological differences between GWAS-based PRS studies contribute to mixed findings that yield inconclusive results.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app