Add like
Add dislike
Add to saved papers

Plasma Deoxycholic Acid Levels are Associated with Hemodynamic and Clinical Outcomes in Acute Pulmonary Embolism Patients.

This study aimed to evaluate the correlation of plasma deoxycholic acid (DCA) levels with clinical and hemodynamic parameters in acute pulmonary embolism (APE) patients. Total 149 APE adult patients were prospectively recruited. Plasma DCA levels were measured using rapid resolution liquid chromatography-quadrupole time-of-flight mass spectrometry. Baseline clinical and hemodynamic parameters were evaluated according to plasma DCA levels. The plasma DCA levels were significantly lower in APE patients than in those without APE (P < 0.001). APE patients with adverse events had lower plasma DCA levels (P < 0.001). Low DCA group patients presented more adverse cardiac function, higher NT-proBNP levels (P = 0.010), and higher WHO functional class levels (P = 0.023). Low DCA group also presented with an adverse hemodynamic status, with higher pulmonary vascular resistance levels (P = 0.027) and lower cardiac index levels (P = 0.024). Both cardiac function and hemodynamic parameters correlated well with plasma DCA levels. Kaplan-Meier survival analysis demonstrated that APE patients with lower plasma DCA levels had a significantly higher event rate (P = 0.009). In the univariate and multivariate Cox regression analyses, the plasma DCA level was an independent predictor of clinical worsening events after adjusting for age, sex, WHO functional class, NT-proBNP level, pulmonary vascular resistance, and cardiac index (HR 0.370, 95% CI 0.161, 0.852; P = 0.019). Low plasma DCA levels predicted adverse cardiac function and hemodynamic collapse. A low DCA level was correlated with a higher clinical worsening event rate and could be an independent predictor of clinical outcomes in multivariate analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app