Add like
Add dislike
Add to saved papers

Combined MR quantitative susceptibility mapping and multi-shell diffusion in Parkinson's disease.

BACKGROUND AND PURPOSE: Quantitative susceptibility mapping (QSM), neurite orientation dispersion and density imaging (NODDI), and the g-ratio have separately shown differences between Parkinson's disease (PD) and healthy controls. The g-ratio has, however, not been studied in PD in the substantia nigra (SN) and the putamen. A combination of these methods could also potentially be a complementary imaging biomarker for PD. This study aimed to assess the diagnostic performance of QSM, NODDI, the g-ratio, and a combined QSM-NODDI imaging marker in the SN and putamen of PD patients.

METHODS: In this prospective study, the diagnostic performance of median region of interest values was compared in a cohort of 15 participants with PD and 14 healthy controls after manual segmentation. The diagnostic performance was assessed using the area under curve (AUC) for the receiving operator characteristic.

RESULTS: Median QSM in the contralateral SN identified PD with AUC 0.77, and median isotropic volume fraction identified PD in the ipsilateral SN with AUC 0.68. A combined NODDI-QSM marker improved diagnostic performance (AUC 0.80). No significant differences were found in the g-ratio.

CONCLUSION: A combination of median QSM and median isotropic volume fraction improves the differentiation of PD from healthy controls and is a potential biomarker in the diagnostics of PD. This confirms previously reported results indicating that combining QSM and NODDI modestly improves differentiation of PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app