Add like
Add dislike
Add to saved papers

Factors leading to falls in transfemoral prosthesis users: a case series of prosthesis-side stumble recovery responses.

BACKGROUND: Falls due to stumbling are prevalent for transfemoral prosthesis users and may lead to increased injury risk. This preliminary case series analyzes the transfemoral prosthesis user stumble recovery response to highlight key deficits in current commercially-available prostheses and proposes potential interventions to improve recovery outcomes.

METHODS: Six transfemoral prosthesis users were perturbed on their prosthetic limb at least three times while walking on a treadmill using obstacle perturbations in early, mid and late swing. Kinematic data were collected to characterize the response, while fall rate and key kinematic recovery metrics were used to assess the quality of recovery and highlight functional deficits in current commercially-available prostheses.

RESULTS: Across all participants, 13 (54%) of the 24 trials resulted in a fall (defined as > 50% body-weight support) with all but one participant (83%) falling at least once and two participants (33%) falling every time. In contrast, in a previous study of seven young, unimpaired, non-prosthesis users using the same experimental apparatus, no falls occurred across 190 trials. For the transfemoral prosthesis users, early swing had the highest rate of falling at 64%, followed by mid-swing at 57%, and then late swing at 33%. The trend in falls was mirrored by the kinematic recovery metrics (peak trunk angle, peak trunk angular velocity, forward reach of the perturbed limb, and knee angle at ground contact). In early swing all four metrics were deficient compared to non-prosthesis user controls. In mid swing, all but trunk angular velocity were deficient. In late swing only forward reach was deficient.

CONCLUSION: Based on the stumble recovery responses, four potential deficiencies were identified in the response of the knee prostheses: (1) insufficient resistance to stance knee flexion upon ground contact; (2) insufficient swing extension after a perturbation; (3) difficulty initiating swing flexion following a perturbation; and (4) excessive impedance against swing flexion in early swing preventing the potential utilization of the elevating strategy. Each of these issues can potentially be addressed by mechanical or mechatronic changes to prosthetic design to improve quality of recovery and reduce the likelihood a fall.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app