We have located links that may give you full text access.
A unified approach to investigating 4 dpf zebrafish larval behaviour through a standardised light/dark assay.
Zebrafish have emerged as a dynamic research model in the domains of neuropsychopharmacology, biological psychiatry and behaviour. Working with larvae ≤4 days post-fertilisation (dpf) offers an avenue for high-throughput investigation whilst aligning with the 3Rs principles of animal research. The light/dark assay, which is the most used behavioural assay for larval neuropharmacology research, lacks experimental reliability and standardisation. This study aimed to formulate a robust, reproducible and standardised light/dark behavioural assay using 4 dpf zebrafish larvae. Considerable between-batch and inter-individual variability was found, which we rectified with a normalisation approach to ensure a reliable foundation for analysis. We then identified that 5-min light/dark transition periods are optimal for locomotor activity. We also found that a 30-min acclimation in the light was found to produce significantly increased dark phase larval locomotion. Next, we confirmed the pharmacological predictivity of the standardised assay using ethanol which, as predicted, caused hyperlocomotion at low concentrations and hypolocomotion at high concentrations. Finally, the assay was validated by assessing the behavioural phenotype of hyperactive transgenic (adgrl3.1-/- ) larvae, which was rescued with psychostimulant medications. Our standardised assay not only provides a clear experimental and analytical framework to work with 4 dpf larvae, but also facilitates between-laboratory collaboration using our normalisation approach.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app