We have located links that may give you full text access.
Dual-task improvement of older adults after treadmill walking combined with blood flow restriction of low occlusion pressure: the effect on the heart-brain axis.
Journal of Neuroengineering and Rehabilitation 2024 July 12
OBJECTIVE: This study explored the impact of one session of low-pressure leg blood flow restriction (BFR) during treadmill walking on dual-task performance in older adults using the neurovisceral integration model framework.
METHODS: Twenty-seven older adults participated in 20-min treadmill sessions, either with BFR (100 mmHg cuff pressure on both thighs) or without it (NBFR). Dual-task performance, measured through light-pod tapping while standing on foam, and heart rate variability during treadmill walking were compared.
RESULTS: Following BFR treadmill walking, the reaction time (p = 0.002) and sway area (p = 0.012) of the posture dual-task were significantly reduced. Participants exhibited a lower mean heart rate (p < 0.001) and higher heart rate variability (p = 0.038) during BFR treadmill walking. Notably, BFR also led to band-specific reductions in regional brain activities (theta, alpha, and beta bands, p < 0.05). The topology of the EEG network in the theta and alpha bands became more star-like in the post-test after BFR treadmill walking (p < 0.005).
CONCLUSION: BFR treadmill walking improves dual-task performance in older adults via vagally-mediated network integration with superior neural economy. This approach has the potential to prevent age-related falls by promoting cognitive reserves.
METHODS: Twenty-seven older adults participated in 20-min treadmill sessions, either with BFR (100 mmHg cuff pressure on both thighs) or without it (NBFR). Dual-task performance, measured through light-pod tapping while standing on foam, and heart rate variability during treadmill walking were compared.
RESULTS: Following BFR treadmill walking, the reaction time (p = 0.002) and sway area (p = 0.012) of the posture dual-task were significantly reduced. Participants exhibited a lower mean heart rate (p < 0.001) and higher heart rate variability (p = 0.038) during BFR treadmill walking. Notably, BFR also led to band-specific reductions in regional brain activities (theta, alpha, and beta bands, p < 0.05). The topology of the EEG network in the theta and alpha bands became more star-like in the post-test after BFR treadmill walking (p < 0.005).
CONCLUSION: BFR treadmill walking improves dual-task performance in older adults via vagally-mediated network integration with superior neural economy. This approach has the potential to prevent age-related falls by promoting cognitive reserves.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app