Add like
Add dislike
Add to saved papers

High triglyceride-glucose index and HOMA-IR are associated with different cardiometabolic profile in adults from the ELSA-Brasil study.

BACKGROUND AND AIMS: Insulin resistance (IR) is a risk factor for several cardiometabolic disorders; however, there is conflicting evidence about the reliability of certain IR markers. In this context, the triglyceride-glucose index (TyG) has been proposed as a surrogate marker for IR. This study aimed to compare the TyG index and homeostasis model assessment of insulin resistance (HOMA-IR).

METHODS AND RESULTS: A cross-sectional analysis was conducted using baseline data from 11,314 adults (aged 35-74 years) from the ELSA-Brasil study. The correlation between TyG and HOMA-IR, their interrater reliability, and their predictive value in identifying metabolic syndrome (MetS) were assessed. The mean TyG and HOMA-IR in our sample were 8.81 ± 0.52 and 2.78 ± 1.58 for men, and 8.53 ± 0.48 and 2.49 ± 1.38 for women, respectively. TyG and HOMA-IR showed a weak to moderate correlation with each other (Pearson's r for men: 0.395 and 0.409 for women, p-value <0.05) and other markers of glycemic metabolism. Additionally, the area under the curve for the prediction of MetS was greater for TyG than HOMA-IR, regardless of sex (TyG: 0.836 for men and 0.826 for women; HOMA-IR: 0.775 for men and 0.787 for women). The concordance between these markers was low (Coheńs kappa coefficient: 0.307 for men and 0.306 for women). Individuals with increased TyG exhibited mainly anthropometrical and glycemic metabolic alterations, whereas those with elevated HOMA-IR displayed mostly lipid-associated metabolic alterations.

CONCLUSION: TyG and HOMA-IR might indicate different profiles of cardiometabolic disorders, showing poor agreement in classifying individuals (normal vs. altered) and a weak correlation. Therefore, further studies are needed to investigate the role of TyG as a surrogate marker of IR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app