Add like
Add dislike
Add to saved papers

Multiple-readout lateral flow immunoassay for the sensitive detection of nitrofurazone metabolites through ultrabright AIE-MOF coupled in-situ growth strategy.

The multiple-readout capability of multimodal detection enhances the flexibility, reliability, and accuracy of lateral flow immunoassay (LFIA). The conjugation of two different metal-organic frameworks (MOFs) as a new-generation composite material offers extraordinary opportunities for developing multimodal LFIA. It is anticipated to compensate limitations of traditional single colorimetric signal LFIA and improve the analysis performance. Herein, an ultra-bright fluorescent AIE-MOF was proposed and coupled with an in-situ growth of Prussian blue (PB) nanoparticles strategy to obtain a novel multimodal signal tracer (AIE-MOF@PB). Thereafter, it was successfully applied to develop the multimodal LFIA platform for the detection of nitrofurazone metabolites. The synergy of AIE-MOF and PB endows AIE-MOF@PB with superb water dispersibility, robust fluorescence emission, brilliant colorimetric signal, marvelous photothermal conversion, and enhanced antibody coupling efficiency, all of which facilitate a highly sensitive triple-readout LFIA platform. The detection sensitivity improved by at least 5-fold compared with the colloidal gold-based LFIA. This work not only inspires the rational design of aggregation-induced emission luminogens (AIEgen)-based complex materials but also highlights the promising potential in flexible point-of-care applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app