Add like
Add dislike
Add to saved papers

Sequence variations and accessory proteins adapt TMC functions to distinct sensory modalities.

Neuron 2024 July 4
Transmembrane channel-like (TMC) proteins are expressed throughout the animal kingdom and are thought to encode components of ion channels. Mammals express eight TMCs (mTMC1-8), two of which (mTMC1 and mTMC2) are subunits of mechanotransduction channels. C. elegans expresses two TMCs (TMC-1 and TMC-2), which mediate mechanosensation, egg laying, and alkaline sensing. The mechanisms by which nematode TMCs contribute to such diverse physiological processes and their functional relationship to mammalian mTMCs is unclear. Here, we show that association with accessory proteins tunes nematode TMC-1 to divergent sensory functions. In addition, distinct TMC-1 domains enable touch and alkaline sensing. Strikingly, these domains are segregated in mammals between mTMC1 and mTMC3. Consistent with these findings, mammalian mTMC1 can mediate mechanosensation in nematodes, while mTMC3 can mediate alkaline sensation. We conclude that sequence diversification and association with accessory proteins has led to the emergence of TMC protein complexes with diverse properties and physiological functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app