We have located links that may give you full text access.
Comparison of the Accuracy in Provisional Diagnosis of 22q11.2 Deletion and Williams Syndromes by Facial Photos in Thai Population Between De-Identified Facial Program and Clinicians.
INTRODUCTION: There are more than 6000 genetic syndromes, therefore the recognition of facial patterns may present a challenge for clinicians. The 22q11.2 deletion syndrome (22q11.2 DS) and Williams syndrome (WS) are two different genetic syndromes but share some common phenotypic traits and subtle facial dysmorphisms. Therefore, any tool that would help clinicians recognize genetic syndromes would likely result in a more accurate diagnosis.
METHODS: The syndrome identification accuracy was compared between 2 different facial analysis algorithms (DeepGestalt and GestaltMatcher) of the Face2Gene (F2G) tool and a group of 9 clinicians with different levels of expertise before and after using F2G for a cohort of 64 Thai participants' frontal facial photos divided into 3 groups of 22q11.2 DS, WS and unaffected controls.
RESULTS: The higher accuracy from the DeepGestalt algorithm than from clinicians was demonstrated, especially when comparing between the two syndromes. The accuracy was highest when clinicians use the tool combined with their own decision-making process. The tool's second algorithm, GestaltMatcher revealed clear separation among these three groups of photos.
DISCUSSION: The result of F2G outperforming clinicians was not surprising. However, the highest increase in accuracy was with nondysmorphology clinicians using F2G.
CONCLUSION: Face2Gene would be a useful tool to help clinicians in facial recognition of genetic syndromes, before ordering specific tests to confirm the definite diagnosis.
METHODS: The syndrome identification accuracy was compared between 2 different facial analysis algorithms (DeepGestalt and GestaltMatcher) of the Face2Gene (F2G) tool and a group of 9 clinicians with different levels of expertise before and after using F2G for a cohort of 64 Thai participants' frontal facial photos divided into 3 groups of 22q11.2 DS, WS and unaffected controls.
RESULTS: The higher accuracy from the DeepGestalt algorithm than from clinicians was demonstrated, especially when comparing between the two syndromes. The accuracy was highest when clinicians use the tool combined with their own decision-making process. The tool's second algorithm, GestaltMatcher revealed clear separation among these three groups of photos.
DISCUSSION: The result of F2G outperforming clinicians was not surprising. However, the highest increase in accuracy was with nondysmorphology clinicians using F2G.
CONCLUSION: Face2Gene would be a useful tool to help clinicians in facial recognition of genetic syndromes, before ordering specific tests to confirm the definite diagnosis.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app