Add like
Add dislike
Add to saved papers

Explainable artificial intelligence for LDL cholesterol prediction and classification.

INTRODUCTION: Monitoring LDL-C levels is essential in clinical practice because there is a direct relation between low-density lipoprotein cholesterol (LDL-C) levels and atherosclerotic heart disease risk. Therefore, measurement or estimate of LDL-C is critical. The present study aims to evaluate Artificial Intelligence (AI) and Explainable AI (XAI) methodologies in predicting LDL-C levels while emphasizing the interpretability of these predictions.

MATERIALS AND METHODS: We retrospectively reviewed data from the Laboratory Information System (LIS) of Ankara Etlik City Hospital (AECH). We included 60.217 patients with standard lipid profiles (total cholesterol [TC], high-density lipoprotein cholesterol, and triglycerides) paired with same-day direct LDL-C results. AI methodologies, such as Gradient Boosting (GB), Random Forests (RF), Support Vector Machines (SVM), and Decision Trees (DT), were used to predict LDL-C and compared directly measured and calculated LDL-C with formulas. XAI techniques such as Shapley additive annotation (SHAP) and locally interpretable model-agnostic explanation (LIME) were used to interpret AI models and improve their explainability.

RESULTS: Predicted LDL-C values using AI, especially RF or GB, showed a stronger correlation with direct measurement LDL-C values than calculated LDL-C values with formulas. TC was shown to be the most influential factor in LDL-C prediction using SHAP and LIME. The agreement between the treatment groups based on NCEP ATPIII guidelines according to measured LDL-C and the LDL-C groups obtained with AI was higher than that obtained with formulas.

CONCLUSIONS: It can be concluded that AI is not only a reliable method but also an explainable method for LDL-C estimation and classification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app