Add like
Add dislike
Add to saved papers

An electrochemical biosensor based on mild reduction-activated CRISPR/Cas12a system for sensitive detection of circulating tumor cells.

Circulating tumor cell (CTC) has been a valuable biomarker for the diagnosis of breast cancer, while folate receptor is a kind of cell surface receptor glycoprotein which is overexpressed in breast cancer. In this work, we have designed and fabricated an electrochemical biosensor for sensitive detection of folate receptor-positive CTCs based on mild reduction assisted CRISPR/Cas system. Specifically, folate functionalized magnetic beads are firstly prepared to capture CTCs owing to the strong affinity between folate and the folate receptors on the surface of cells. Then, the cell membranes are treated by mild reduction so as to expose a large number of free sulfhydryl groups, which can be coupled with maleimide-DNA to introduce the signal amplified CRISPR/Cas12a system. After the trans-cleavage activity of CRISPR/Cas12a is activated, the long chain DNA modified with electroactive molecules methylene blue can be randomly cleaved into short DNA fragments, which are then captured on the graphite electrode through the host-guest recognition with cucurbit [7]uril, generating highly amplified electrochemical signal corresponding to the number of CTCs. The electrochemical biosensor not only demonstrates the sensitivity with a low detection limit of 2 cells/mL, but also highlights its excellent selectivity and stability in complex environment. Therefore, our biosensor may provide an alternative tool for the analysis of CTCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app