Add like
Add dislike
Add to saved papers

The functional and structural alterations in brain regions related to the fear network model in panic disorder: A resting-state fMRI and T1-weighted imaging study.

Abnormal functional connectivity (FC) within the fear network model (FNM) has been identified in panic disorder (PD) patients, but the specific local structural and functional properties, as well as effective connectivity (EC), remain poorly understood in PD. The purpose of this study was to investigate the structural and functional patterns of the FNM in PD. Magnetic resonance imaging data were collected from 33 PD patients and 35 healthy controls (HCs). Gray matter volume (GMV), degree centrality (DC), regional homogeneity (ReHo), and amplitude of low-frequency fluctuation (ALFF) were used to identify the structural and functional characteristics of brain regions within the FNM in PD. Subsequently, FC and EC of abnormal regions, based on local structural and functional features, and their correlation with clinical features were further examined. PD patients exhibited preserved GMV, ReHo, and ALFF in the brain regions of the FNM compared with HCs. However, increased DC in the bilateral amygdala was observed in PD patients. The amygdala and its subnuclei exhibited altered EC with rolandic operculum, insula, medial superior frontal gyrus, supramarginal gyrus, opercular part of inferior frontal gyrus, and superior temporal gyrus. Additionally, Hamilton Anxiety Scale score was positively correlated with EC from left lateral nuclei (dorsal portion) of amygdala to right rolandic operculum and left superior temporal gyrus. Our findings revealed a reorganized functional network in PD involving brain regions regulating exteroceptive-interoceptive signals, mood, and somatic symptoms. These results enhance our understanding of the neurobiological underpinnings of PD, suggesting potential biomarkers for diagnosis and targets for therapeutic intervention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app