Add like
Add dislike
Add to saved papers

Nano co-delivery of doxorubicin and plumbagin achieves synergistic chemotherapy of hepatocellular carcinoma.

Doxorubicin (DOX) is a chemotherapy drug used for hepatocellular carcinoma (HCC) treatment, but its effectiveness can be dramatically dampened by cancer cell chemoresistance. Signal transducer and activator of transcription 3 (STAT3) is implicated with drug resistance in a range of cancers (e.g., HCC), and the STAT3 inhibition can reverse the resistance of cancer cells to chemotherapeutic drugs. In the present study, a combination regimen to improve the efficiency of DOX was provided via the STAT3 blockade using plumbagin (PLB). A poly(lactic-co-glycolic acid) decorated by polyethylene glycol and aminoethyl anisamide was produced in the present study with the hope of generating the nanoparticles for co-delivery of DOX and PLB. The resulting co-formulation suppressed the STAT3 activity and achieved the synergistic chemotherapy, which led to tumor inhibition in the mice with subcutaneous DOX-resistant HCC, without causing any toxicity. The present study reveals the synergism of DOX and PLB, and demonstrates a promising combinatorial approach for treating HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app