We have located links that may give you full text access.
miR-25-5p in exosomes derived from UVB-induced fibroblasts regulates melanogenesis via TSC2-dominated cellular organelle dysfunction.
Journal of Dermatological Science 2024 June 10
BACKGROUND: Few reports have confirmed whether exosomes derived from fibroblasts can regulate the process of melanogenesis. We wondered whether exosomes derived from fibroblasts could have a potent regulatory effect on melanogenesis and explored the underlying mechanisms.
OBJECTIVE: This study aimed to find the role of fibroblasts in melanocytes and revealed the related mechanisms.
METHODS: RT-qPCR, Western blot analysis were conducted to measure the RNA and protein expression level of various related genes. miRNA sequencing, mass spectrum analysis and subsequent bioinformatics analysis were employed to find the underlying targets. Zebrafish were employed to measure the melanin synthesis related process in vivo. Furthermore, electron microscopy, ROS measurement and dual-luciferase reporter assay were adopted to investigate the relationship between these processes.
RESULTS: We found that exosomes derived from human primary dermal fibroblasts were internalized by human primary melanocytes and MNT1 cells and that the melanin content and the expression of melanin synthesis-related proteins TYR and MITF was inhibited by exosomes derived from UVB-induced human primary dermal fibroblasts. The miRNA expression profile in secreted exosomes changed significantly, with miR-25-5p identified as capable of regulating TSC2 expression via the CDS region. The miR-25-5p-TSC2 axis could affect the melanin content through subsequent cellular organelle dysfunction, such as mitochondrial dysfunction, endoplasmic reticulum stress and dysregulation of lysosomal cysteine proteases.
CONCLUSION: We unveiled a novel regulatory role of fibroblasts in melanocytes, facilitated by the secretion of exosomes. miR-25-5p within exosomes plays a pivotal role in regulating melanogenesis via TSC2-induced cellular organelle dysfunction.
OBJECTIVE: This study aimed to find the role of fibroblasts in melanocytes and revealed the related mechanisms.
METHODS: RT-qPCR, Western blot analysis were conducted to measure the RNA and protein expression level of various related genes. miRNA sequencing, mass spectrum analysis and subsequent bioinformatics analysis were employed to find the underlying targets. Zebrafish were employed to measure the melanin synthesis related process in vivo. Furthermore, electron microscopy, ROS measurement and dual-luciferase reporter assay were adopted to investigate the relationship between these processes.
RESULTS: We found that exosomes derived from human primary dermal fibroblasts were internalized by human primary melanocytes and MNT1 cells and that the melanin content and the expression of melanin synthesis-related proteins TYR and MITF was inhibited by exosomes derived from UVB-induced human primary dermal fibroblasts. The miRNA expression profile in secreted exosomes changed significantly, with miR-25-5p identified as capable of regulating TSC2 expression via the CDS region. The miR-25-5p-TSC2 axis could affect the melanin content through subsequent cellular organelle dysfunction, such as mitochondrial dysfunction, endoplasmic reticulum stress and dysregulation of lysosomal cysteine proteases.
CONCLUSION: We unveiled a novel regulatory role of fibroblasts in melanocytes, facilitated by the secretion of exosomes. miR-25-5p within exosomes plays a pivotal role in regulating melanogenesis via TSC2-induced cellular organelle dysfunction.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app