Add like
Add dislike
Add to saved papers

Targeted lipidomics uncovers oxylipin perturbations and potential circulation biomarkers in Bietti's crystalline dystrophy.

PURPOSE: Abnormalities in lipid metabolism have been proposed in Bietti's crystalline dystrophy (BCD). We aim to characterize the lipid profiles in a case-control study.

METHODS: All participants were genetically confirmed by CYP4V2 gene sequencing and underwent chorioretinopathy evaluation by calculating the percentages of AF atrophy (PAFA). Fasting blood samples of BCD patients and controls were collected, and plasma was analyzed for routine lipid profiles. Targeted lipidomic evaluation includes long chain polyunsaturated fatty acids (LCPUFA) and associated eicosanoid metabolites.

RESULTS: Routine lipids profiles showed elevated plasma levels of triglyceride (P = 0.043) and low-density lipoprotein cholesterol (P = 0.024) in BCD patients. Lipidomic analysis showed significantly decreased levels of ω-3 LCPUFA including docosahexaenoic acid (DHA, 22:6, P = 0.00068) and eicosapentaenoic acid (EPA, 20:5, P = 0.0016), as well as ω-6 LCPUFA arachidonic acid (ARA, 20:4, P < 0.0001) in BCD patients. Eicosanoid metabolites, either derived from ω-3 and/ or ω-6 LCPUFAs via cyclooxygenase (COX) or lipoxygenase (LOX) pathways, including 5-HEPE, 12-HEPE, 13-HDHA, 15-HETE, 12-HETE, 5-HETE, 6k-PGF1a, PGE2, PGJ2, and TXB2, exhibited significant differences (P < 0.0001) between BCD patients and controls. Genotypes of CYP4V2, specifically the biallelic null mutations, were observed to correlate with more remarkably reduced levels of oxylipins, involving major LOX pathway metabolites including 5-HETE, 5-HEPE, 12-HEPE and LTB4.

CONCLUSIONS: BCD patients demonstrated significant decreases in plasma levels of ω-3 and ω-6 LCPUFA (DHA, EPA, and ARA), as well as their downstream metabolites via the COX and LOX pathways, suggesting that these might be implicated in BCD pathogenesis and could serve as biomarkers and therapeutic targets of the disease.

KEY MESSAGES: What is known BCD is a vision-threatening hereditary disease the causative gene of which is CYP4V2. Abnormalities in lipid metabolism have been proposed and demonstrated previously in BCD studies. The detailed pathogenesis remains unclear and controversial. What is new We observed prominent lipidomic alterations in the circulation when compared with age, gender, and bodymass index (BMI)-matched healthy controls. BCD patients demonstrated significant decreases in plasma levels of ω-3 and ω-6 LCPUFA (DHA, EPA, and ARA). Remarkable changes were observed in the downstream metabolites of the LCPUFA via the COX and LOX pathways. Genotypes of CYP4V2, specifically the biallelic null mutations, were observed to correlate with more remarkably reduced levels of oxylipins, involving major LOX pathway metabolites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app