We have located links that may give you full text access.
Characterization of accurate 3D collimator-detector response function for single- and multi-lofthole collimated SPECT cameras.
Japanese Journal of Radiology 2024 July 2
PURPOSE: Collimator-detector response function (CDRF) of a SPECT scanner refers to the image generated from a point source of activity. This research aims to characterize the CDRF of a breast-dedicated SPECT imager equipped with a lofthole collimator using GATE Monte Carlo simulation.
MATERIALS AND METHODS: To do so, a cylindrical multi-lofthole collimation system with lofthole apertures dedicated to breast imaging was modeled using the GATE Monte Carlo simulator. The dependency of the CDRF on the source-to-collimator distance of a single-lofthole as well as 8-lofthole collimations was assessed and then compared. In addition, the 3D-sensitivity map of the 8-lofthole collimation was derived. Finally, fair comparisons were conducted between the response of the 8-lofthole collimator and that of an 8-pinhole and also existing analytical derivations. In all cases, a data acquisition period of 5.0 min with an in-air 99m Tc point source was considered.
RESULTS: For the single-lofthole collimator, 4.5 times increasing the magnification factor leads to a 16- and twofold improvement in the sensitivity and spatial resolution, respectively. In the single-lofthole collimator, the resolution and sensitivity are degraded as the source-to-aperture distance increases. For the cylindrical 8-lofthole collimator, the findings confirm that CDRF strongly depends on source-to-aperture distance and angle of photon incidence. For a 30 mm in-plane offset point, a 25% increase in sensitivity is observed compared to that of the center of the FOV. Increasing the angle from 0 ∘ to 34 ∘ results in a 50% reduction in sensitivity. Furthermore, the findings illustrate that spatial resolution follows a quadratic function as 10 - 3 d 2 + 2 × 10 - 4 d + R 0 where d is an offset along the x-, y-, and z-axis, and R0 is the spatial resolution at the center of the FOV.
CONCLUSION: In conclusion, both spatial resolution and sensitivity of the lofthole collimation are considerably angle- and offset-dependent within the FOV of single- and multi-lofthole collimated SPECT imagers.
MATERIALS AND METHODS: To do so, a cylindrical multi-lofthole collimation system with lofthole apertures dedicated to breast imaging was modeled using the GATE Monte Carlo simulator. The dependency of the CDRF on the source-to-collimator distance of a single-lofthole as well as 8-lofthole collimations was assessed and then compared. In addition, the 3D-sensitivity map of the 8-lofthole collimation was derived. Finally, fair comparisons were conducted between the response of the 8-lofthole collimator and that of an 8-pinhole and also existing analytical derivations. In all cases, a data acquisition period of 5.0 min with an in-air 99m Tc point source was considered.
RESULTS: For the single-lofthole collimator, 4.5 times increasing the magnification factor leads to a 16- and twofold improvement in the sensitivity and spatial resolution, respectively. In the single-lofthole collimator, the resolution and sensitivity are degraded as the source-to-aperture distance increases. For the cylindrical 8-lofthole collimator, the findings confirm that CDRF strongly depends on source-to-aperture distance and angle of photon incidence. For a 30 mm in-plane offset point, a 25% increase in sensitivity is observed compared to that of the center of the FOV. Increasing the angle from 0 ∘ to 34 ∘ results in a 50% reduction in sensitivity. Furthermore, the findings illustrate that spatial resolution follows a quadratic function as 10 - 3 d 2 + 2 × 10 - 4 d + R 0 where d is an offset along the x-, y-, and z-axis, and R0 is the spatial resolution at the center of the FOV.
CONCLUSION: In conclusion, both spatial resolution and sensitivity of the lofthole collimation are considerably angle- and offset-dependent within the FOV of single- and multi-lofthole collimated SPECT imagers.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app