We have located links that may give you full text access.
Thrombomodulin Improves Cognitive Deficits in Heat-Stressed Mice.
International Journal of Neuropsychopharmacology 2024 June 28
BACKGROUND: Thrombomodulin (TM) exerts anticoagulant and anti-inflammatory effects to improve the survival of patients with septic shock. Heat stroke resembles septic shock in many aspects. We tested whether TM would improve cognitive deficits and related causative factors in heat-stressed mice.
METHODS: Adult male mice were exposed to HS (33 oC 2h daily for 7 consecutive days) to induce cognitive deficits. Recombinant human soluble thrombomodulin (TM, 1 mg/kg, i.p.) was administered immediately after the first HS trial and then once daily for 7 consecutive days. We performed the Y-maze, novel objective recognition, and passive avoidance tests to evaluate cognitive function. Plasma levels of lipopolysaccharide, high-mobility group box 1 (HMGB1), coagulation parameters, and both plasma and tissue levels of inflammatory and oxidative stress markers were measured biochemically. The duodenum and hippocampus sections were immunohistochemically stained. The intestinal and blood-brain barrier permeability were determined.
RESULTS: Compared to controls, HS mice treated with TM had lesser extents of cognitive deficits, exacerbated stress reactions, gut barrier disruption, endotoxemia, blood-brain barrier disruption, and inflammatory, oxidative, and coagulatory injury to heart, duodenum, and hippocampal tissues, and increased plasma HMGB1. In addition to reducing cognitive deficits, TM therapy alleviated all the abovementioned complications in heat-stressed mice.
CONCLUSIONS: The findings suggest that heat stress can lead to exacerbated stress reactions, endotoxemia, gut barrier disruption, blood-brain barrier disruption, hippocampal inflammation, coagulopathy, and oxidative stress, which may act as causative factors for cognitive deficits. Thrombomodulin, an anti-inflammatory, antioxidant, and anti-coagulatory agent, inhibited heat stress-induced cognitive deficits in mice.
METHODS: Adult male mice were exposed to HS (33 oC 2h daily for 7 consecutive days) to induce cognitive deficits. Recombinant human soluble thrombomodulin (TM, 1 mg/kg, i.p.) was administered immediately after the first HS trial and then once daily for 7 consecutive days. We performed the Y-maze, novel objective recognition, and passive avoidance tests to evaluate cognitive function. Plasma levels of lipopolysaccharide, high-mobility group box 1 (HMGB1), coagulation parameters, and both plasma and tissue levels of inflammatory and oxidative stress markers were measured biochemically. The duodenum and hippocampus sections were immunohistochemically stained. The intestinal and blood-brain barrier permeability were determined.
RESULTS: Compared to controls, HS mice treated with TM had lesser extents of cognitive deficits, exacerbated stress reactions, gut barrier disruption, endotoxemia, blood-brain barrier disruption, and inflammatory, oxidative, and coagulatory injury to heart, duodenum, and hippocampal tissues, and increased plasma HMGB1. In addition to reducing cognitive deficits, TM therapy alleviated all the abovementioned complications in heat-stressed mice.
CONCLUSIONS: The findings suggest that heat stress can lead to exacerbated stress reactions, endotoxemia, gut barrier disruption, blood-brain barrier disruption, hippocampal inflammation, coagulopathy, and oxidative stress, which may act as causative factors for cognitive deficits. Thrombomodulin, an anti-inflammatory, antioxidant, and anti-coagulatory agent, inhibited heat stress-induced cognitive deficits in mice.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app