Add like
Add dislike
Add to saved papers

High Sensitive and Stable UV-Vis Photodetector Based on MoS 2 /MoO 3 vdW Heterojunction.

The development of new high-performance photodetectors (PDs) is currently focused on achieving small size, low power consumption, low cost, and large bandwidth. Two-dimensional (2D) materials and heterostructures offer promising approaches for the future development of optoelectronic devices. However, there has been limited research on 2D wide-bandgap semiconductor heterostructures. In this study, we successfully constructed a MoS2 /MoO3 vdW heterojunction PD. This PD exhibited excellent response and significant photovoltaic behavior in the ultraviolet (UV) to visible (Vis) range. Under 365 nm UV light and 1 V bias voltage, the PD demonstrated a high responsivity of 645 mA/W, a high specific detectivity of 8.98 × 1010 Jones, and fast response speeds of 55.9/59.6 ms. At 0 V bias voltage, the responsivity reached as high as 157 mA/W. Furthermore, the PD exhibited remarkable stability in its performance. These outstanding characteristics can be attributed to the strong internal electric field created by the type II heterojunction structure and the chemical stability of the materials. This work opens a route for the application of 2D wide-bandgap semiconductor materials in optoelectronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app